Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Commun Biol ; 6(1): 528, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2322455

ABSTRACT

The discovery and characterization of antigen-specific CD8+ T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapt single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We use this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then construct SCT libraries to capture SARS-CoV-2 specific CD8+ T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes is validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2/genetics , Antigens , Epitopes , Peptides/genetics
2.
Health Data Sci ; 20222022.
Article in English | MEDLINE | ID: covidwho-2257820

ABSTRACT

Background: Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-II receptor blockers (ARB), the most commonly prescribed antihypertensive medications, counter renin-angiotensin-aldosterone system (RAAS) activation via induction of angiotensin-converting enzyme 2 (ACE2) expression. Considering that ACE2 is the functional receptor for SARS-CoV-2 entry into host cells, the association of ACEi and ARB with COVID-19 outcomes needs thorough evaluation. Methods: We conducted retrospective analyses using both unmatched and propensity score (PS)-matched cohorts on electronic health records (EHRs) to assess the impact of RAAS inhibitors on the risk of receiving invasive mechanical ventilation (IMV) and 30-day mortality among hospitalized COVID-19 patients. Additionally, we investigated the immune cell gene expression profiles of hospitalized COVID-19 patients with prior use of antihypertensive treatments from an observational prospective cohort. Results: The retrospective analysis revealed that there was no increased risk associated with either ACEi or ARB use. In fact, the use of ACEi showed decreased risk for mortality. Survival analyses using PS-matched cohorts suggested no significant relationship between RAAS inhibitors with a hospital stay and in-hospital mortality compared to non-RAAS medications and patients not on antihypertensive medications. From the analysis of gene expression profiles, we observed a noticeable up-regulation in the expression of 1L1R2 (an anti-inflammatory receptor) and RETN (an immunosuppressive marker) genes in monocytes among prior users of ACE inhibitors. Conclusion: Overall, the findings do not support the discontinuation of ACEi or ARB treatment and suggest that ACEi may moderate the COVID-19 hyperinflammatory response.

3.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: covidwho-2281036

ABSTRACT

Human adaptive-like natural killer (NK) cells express low levels of FcεRIγ (FcRγ-/low) and are reported to accumulate during COVID-19 infection; however, the mechanism underlying and regulating FcRγ expression in NK cells has yet to be fully defined. We observed lower FcRγ protein expression in NK cell subsets from lung transplant patients during rapamycin treatment, suggesting a link with reduced mTOR activity. Further, FcRγ-/low NK cell subsets from healthy donors displayed reduced mTOR activity. We discovered that FcRγ upregulation is dependent on cell proliferation progression mediated by IL-2, IL-15, or IL-12, is sensitive to mTOR suppression, and is inhibited by TGFß or IFNα. Accordingly, the accumulation of adaptive-like FcRγ-/low NK cells in COVID-19 patients corresponded to increased TGFß and IFNα levels and disease severity. Our results show that an adaptive-like NK cell phenotype is induced by diminished cell proliferation and has an early prognostic value for increased TGFß and IFNα levels in COVID-19 infection associated with disease severity.


Subject(s)
COVID-19 , Cell Proliferation , Humans , Killer Cells, Natural , Phenotype , TOR Serine-Threonine Kinases , Transforming Growth Factor beta
4.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2241045

ABSTRACT

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

5.
Nat Med ; 29(1): 236-246, 2023 01.
Article in English | MEDLINE | ID: covidwho-2160251

ABSTRACT

Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Antibodies, Viral
6.
Science ; 376(6590): eabi9591, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-2088383

ABSTRACT

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Subject(s)
Autoimmune Diseases , COVID-19 , Animals , CD8-Positive T-Lymphocytes , Humans , Mice , Receptors, KIR , T-Lymphocytes, Regulatory
7.
Cell Rep ; 37(13): 110167, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1596401

ABSTRACT

Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαß sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαß constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , Cell Culture Techniques , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , RNA, Viral/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
8.
Clin Infect Dis ; 73(12): 2193-2204, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1592626

ABSTRACT

BACKGROUND: Data on the characteristics of coronavirus disease 2019 (COVID-19) patients disaggregated by race/ethnicity remains limited. We evaluated the sociodemographic and clinical characteristics of patients across racial/ethnic groups and assessed their associations with COVID-19 outcomes. METHODS: This retrospective cohort study examined 629 953 patients tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a large health system spanning California, Oregon, and Washington between March 1 and December 31, 2020. Sociodemographic and clinical characteristics were obtained from electronic health records. Odds of SARS-CoV-2 infection, COVID-19 hospitalization, and in-hospital death were assessed with multivariate logistic regression. RESULTS: A total of 570 298 patients with known race/ethnicity were tested for SARS-CoV-2, of whom 27.8% were non-White minorities: 54 645 individuals tested positive, with minorities representing 50.1%. Hispanics represented 34.3% of infections but only 13.4% of tests. Although generally younger than White patients, Hispanics had higher rates of diabetes but fewer other comorbidities. A total of 8536 patients were hospitalized and 1246 died, of whom 56.1% and 54.4% were non-White, respectively. Racial/ethnic distributions of outcomes across the health system tracked with state-level statistics. Increased odds of testing positive and hospitalization were associated with all minority races/ethnicities. Hispanic patients also exhibited increased morbidity, and Hispanic race/ethnicity was associated with in-hospital mortality (odds ratio [OR], 1.39; 95% confidence interval [CI], 1.14-1.70). CONCLUSION: Major healthcare disparities were evident, especially among Hispanics who tested positive at a higher rate, required excess hospitalization and mechanical ventilation, and had higher odds of in-hospital mortality despite younger age. Targeted, culturally responsive interventions and equitable vaccine development and distribution are needed to address the increased risk of poorer COVID-19 outcomes among minority populations.


Subject(s)
COVID-19 , Ethnicity , Hospital Mortality , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2 , Vaccine Development
9.
Cell reports ; 2021.
Article in English | EuropePMC | ID: covidwho-1567619

ABSTRACT

Nesterenko et al. identify T cell responses with potential to confer long term immunity against SARS-CoV-2. The machinery responsible for replicating the viral genome is highly conserved and as shown by Nesterenko et al. can be effectively targeted by CD8+ T cells.

10.
PLoS One ; 16(11): e0259902, 2021.
Article in English | MEDLINE | ID: covidwho-1523440

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with endothelial activation and coagulopathy, which may be related to pre-existing or infection-induced pro-thrombotic autoantibodies such as those targeting angiotensin II type I receptor (AT1R-Ab). METHODS: We compared prevalence and levels of AT1R-Ab in COVID-19 cases with mild or severe disease to age and sex matched negative controls utilizing multivariate logistic and quantile regression adjusted for comorbidities including hypertension, diabetes, and heart disease. RESULTS: There were trends toward increased prevalence (50% vs. 33%, p = 0.1) and level of AT1R-Ab (median 9.8 vs. 6.1 U/mL, p = 0.06) in all cases versus controls. When considered by COVID-19 disease severity, there was a trend toward increased prevalence of AT1R-Ab (55% vs. 31%, p = 0.07), as well as significantly higher AT1R-Ab levels (median 10.7 vs. 5.9 U/mL, p = 0.03) amongst individuals with mild COVID-19 versus matched controls. In contrast, the prevalence (42% vs. 37%, p = 0.9) and level (both medians 6.7 U/mL, p = 0.9) of AT1R-Ab amongst those with severe COVID-19 did not differ from matched controls. CONCLUSIONS: These findings support an association between COVID-19 and AT1R-Ab, emphasizing that vascular pathology may be present in individuals with mild COVID-19 as well as those with severe disease.


Subject(s)
COVID-19 , Adult , Graft Rejection , Humans , Kidney Transplantation , Male , Middle Aged , Receptor, Angiotensin, Type 1
11.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1442406

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
12.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: covidwho-1434875

ABSTRACT

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , COVID-19/mortality , Case-Control Studies , Child , Child, Preschool , Critical Illness , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Interferon-alpha/immunology , Middle Aged , Young Adult
13.
Nat Biotechnol ; 40(1): 110-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1397879

ABSTRACT

A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.


Subject(s)
COVID-19/blood , COVID-19/immunology , Monocytes/metabolism , Single-Cell Analysis , T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Humans , Prognosis
14.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1385739

ABSTRACT

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Subject(s)
Immunity/genetics , Virus Diseases/immunology , Antigen Presentation/genetics , Cohort Studies , Hematopoiesis/genetics , Humans , Interferons/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Myeloid Cells/immunology , Myeloid Cells/pathology , Prognosis , Severity of Illness Index , Systems Biology , Transcriptome , Virus Diseases/blood , Virus Diseases/classification , Virus Diseases/genetics , Viruses/classification , Viruses/pathogenicity
15.
medRxiv ; 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-808855

ABSTRACT

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a new strain harboring the spike variant D614G. With antibody and B cell analytics, we show correlates of adaptive immunity, including a differential response to D614G. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

16.
Res Sq ; 2020 Aug 04.
Article in English | MEDLINE | ID: covidwho-725210

ABSTRACT

We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 135,000 high-confidence SARS-CoV-2-specific TCRs. This database is made freely available, and the data contained in it can be downloaded and analyzed online or offline to assist with the global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.

17.
medRxiv ; 2020 Sep 17.
Article in English | MEDLINE | ID: covidwho-721058

ABSTRACT

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL